Power Cylinder Eco series Servo type

New model of Power Cylinder for high speed and large thrust

- High speed & Large thrust
 - High stopping accuracy
 - High frequent drive

Servomotor can be selected

A customer-selected servomotor can be attached. Please inform us of the manufacturer of the servomotor at the time of an estimate or placing an order.

Please provide and attach the servomotor by the customer or supply from the customer.

High stopping accuracy

By adopting a high precision ball screw, higher stopping

The stop accuracy of standard specifications is within ± 0.1 mm

Maximum function of servomotor exerted

By combining a highly efficient ball screw and highly rigid and light weight disc coupling, the function of the servomotor is fully exerted.

There is no backlash like a key fastening, since it is fastened in a clamp method

High speed and large thrust

It can be used at high speeds in a large thrust area

* 333mm/s at a maximum 15.0kN {1530kgf

Model No. designation

LPES 300 F T 3 S3 J A

Power Cylinder Eco series servo type Maximum thrust 040: { 40.8kgf } 150: 1.50kN { 153kgf } Mounting method 300: 3.00kN { 306kgf } F: Motor direct mounting 400: 4.00kN { 408kgf } 800: 8.00kN { 816kgf } Main body shape 1200: 12.0kN { 1220kgf } T: straight 1500: 15.0kN { 1530kgf }

Motor handling

A: Installed by customer

B : Supplied by customer

Options

S3: with 3 magnetic sensors

100mm

300mm

-type end fitting * Make sure to select or U U: U-type end fitting for the end fitting.

J: bellows

6: 600mm 10: 1000mm * The above numerical values are

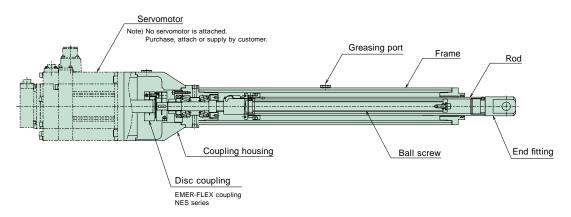
examples.
Refer to the standard model list below for the actual stroke

Stroke

1:

3:

Standard model list


Model number	Maximum thrust N{ kgf }	Maximum speed mm/s	Stroke mm	Screw lead mm	Frame size
LPES040	400 {40.8}		100 200		
LPES150	1.50k {153}	300	300 400	6	70
LPES300	3.00k {306}		500 600		
LPES400	4.00k {408}		200		
LPES800	8.00k {816}		300 400		
LPES1200	12.0k {1220}	333	500 600 800	10	105
LPES1500	15.0k {1530}		1000		

Standard use environment

~	
Environ- ment Model	Indoor type
Ambient temperature	0 ~ 40
Relative humidity	45 ~ 85%
Impact resistance value	1G or less
Installation altitude	1000m or lower above sea level
Atomsphere	Normally indoors*

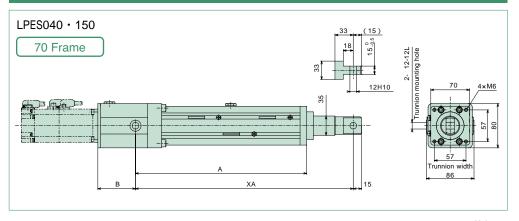
^{*} Normally indoors means no exposure to wind, rain and water, and dusts at a level inside an ordinary factory

Structure

Driving part

A servomotor of almost any manufacturer can be selected. Please attach or supply a servomotor.

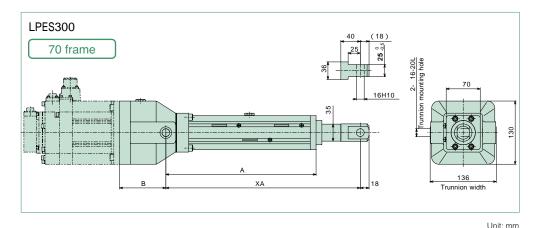
Coupling part


EMER-FLEX coupling NES series is adopted. The industry leader in light weight and high rigidity, servomotor functions are fully exerted.

Actuating part

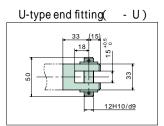
Highly efficient ball screw is adopted. It can withstand remarkably frequent operations and a long life can be expected.

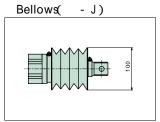
To realize lighter weight, an aluminum frame has been adopted. And the external dimensions of the cylinder are not changed even after mounting a magnetic sensor.


Dimensions Table

Unit: mm

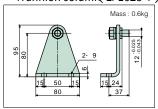
		0		XA		
Model number	Model number B	Stroke	A	MIN	MAX	
	100	309	395	495		
LPES040	68	200	409	495	695	
		300	509	595	895	
	LPES150 77	400	609	695	1095	
LPES150		500	709	795	1295	
		600	809	895	1495	

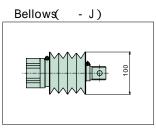

- * B dimension in the above table shows a value when a servomotor J3 series of Mitsubishi Electric is mounted.
- * A flange can be attached. Refer to page 23 for the installation method.

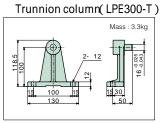


		Stroke	А	XA		
Model number	В			MIN	MAX	
	100	309	400	500		
		200	409	500	700	
I DE0000	0.5	300	509	600	900	
LPES300	95	400	609	700	1100	
		500	709	800	1300	
		600	809	900	1500	

- * B dimension in the above table shows a value when a servomotor J3 series of Mitsubishi Electric is mounted.
- * No flange can be attached. Refer to page 23 for the installation method.

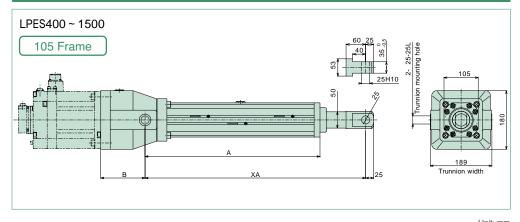

Options


When bellows are equipped, flange mount is not available.


Trunnion column(LPE025-T)

Place an order for a trunnion column separately from the main body model number, and do not provide the code at the end of the model number.

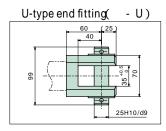
U-type end fitting(- U)



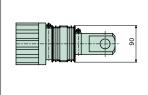
Place an order for a trunnion column separately from the main body model number, and do not provide the code at the end of the model number.

Mini series

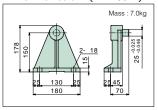
Dimensions Table

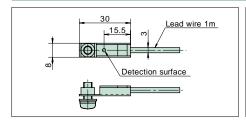

U	Ш	l:	I	I	Ш

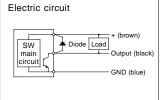
		0		XA		
Model number	В	Stroke	A	MIN	MAX	
L DE0.400		-	-	-	-	
LPES400		200	537	680	880	
		300	637	790	1090	
LPES800	400	400	737	900	1300	
I DE04000	136	500	837	1010	1510	
LPES1200		600	937	1115	1715	
LPES1500		800	1137	1335	2135	
		1000	1337	1555	2555	


^{*} B dimension in the above table shows a value when a servomotor J3 series of Mitsubishi Electric is mounted.

* No flange can be attached. Refer to page 23 for the installation method.


Options

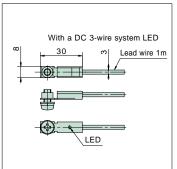

Trunnion column(LPE400-T)

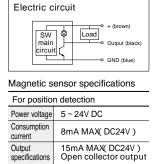


Place an order for a trunnion column separately from the main body model number, and do not provide the code at the end of the model number.

Sensor related option

Standard magnetic sensor (S3)

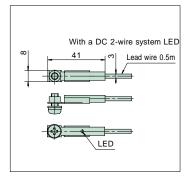


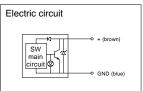

Magnetic sensor specifications					
Non-contact switch (DC 3-wire system) (lead wire 1m)					
Power voltage DC5 ~ 26V					
Consumption current	8mA MAX(DC24V)				
Output specifications	15mA MAX(DC24V) Open collector output				

Special type

With (LED) lamp

When the sensor detects, a red lamp lights to indicate detection. It is useful when setting the position of the magnetic sensor.





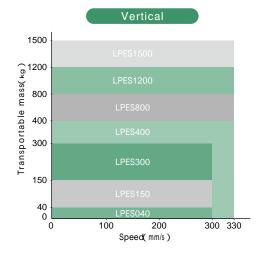
specifications

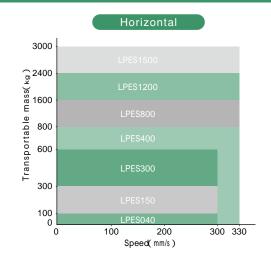
2-wire system

* 2-wire system is only with lamp.

Magnetic sensor specifications For position detection Power voltage 10 ~ 28V DC Load current 5 ~ 40mA Internal drop voltage 4V or less

Power transmission capacity


Basic model	asic model Maximum thrust		table mass ^{note 1) note 2)}	Maximum speed Maximum input	Servomotor J3 series	Screw lead
number	N{ kgf }	Vertical kg			by Mitsubishi Electric	mm
LPES040	400 { 40.8 }	40.8	100	300mm/s (3000r/min)	HF-KP43B (400W)	6
LPES150	1.50k { 153 }	153	300	300mm/s (3000r/min)	HF-KP73B (750W)	6
LPES300	3.00k { 306 }	306	600	300mm/s (3000r/min)	HF-SP152B ^{note 3)} (1.5kW)	6
LPES400	4.00k { 408 }	408	800	333mm/s (2000r/min)	HF-SP202B (2.0kW)	10
LPES800	8.00k { 816 }	816	1600	333mm/s (2000r/min)	HF-SP352B (3.5kW)	10
LPES1200	12.0k { 1220 }	1220	2400	333mm/s (2000r/min)	HF-SP502B (5.0kW)	10
LPES1500	15.0k { 1530 }	1530	3000	333mm/s (2000r/min)	HF-SP702B (7.0kW)	10


Note 1) The transportable mass shows a value when it is operated at an acceleration of 0.3G.

Note 2) In a case of horizontal transportation, use a linear guide.

Note 3) The rated rotation speed of HF-SP152B is 2000r/min. When use at the maximum rotation speed, set the input rotation speed to 3000r/min.

Simple selection graph

Operating frequency and duty factor

Number of cycles	15 times/min.
Working time rate	50%ED

The working time rate shows a rate of operating time per 30 minutes on a 30-minute basis.

Working time rate(%ED)=

operating time of a cycle operating time of a cycle + dwell time

The working time rate is calculated with the right formula.

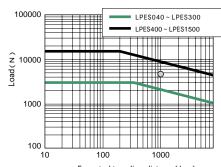
The allowable cycle number of the Eco series servo type is determined depending on heating of the motor and heating of the ball screw and bearing part. It varies depending on the stroke and thrust in use, use the values specified above as a guide. Additionally, the life of the cylinder is not considered for the values.

Life

The life of the ball screw varies depending on peeling due to fatigue of the rolling surface. Check the approximate life with this expected traveling distance graph. However, when shocks are frequently applied, and when appropriate lubrication or maintenance are not provided, the expected traveling distance becomes considerably shorter.

Expected traveling distance(km) =

actual load stroke(m)x operation frequency (times/day) x operating number of days/year x 10^{-3} x expected number of years


The graph at the right is on an L10 life basis.

The L10 life means the life that can be reached by 90% or more of all is shown as traveling distance.

When selecting a Power Cylinder based on the life, select the model number in the following procedures from this graph. In this graph, the required expected traveling distance is set to 1000km and PM equivalent load is set to 5000N {510kgf}.

Each intersection point is the required size of a Power Cylinder to be LPES400 – 1500. However from the rated thrust, it will be LPES800 or larger. When the load changes greatly, calculate the equivalent load with the right formula.

Expected traveling distance

Expected traveling distance(km)

Рм :equivalent load N PMIN + 2 x PMAX PMIN : minimum load N PMAX: maximum load N

Input shaft conversion inertia moment, cylinder mass

Upper line: moment of inertia ×10⁻³ kg • m² Lower line: cylinder mass kg

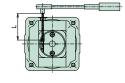
3

Basic	Stroke mm								
model number	100	200	300	400	500	600	800	1000	
LDEC040	0.103	0.115	0.128	0.14	0.153	0.165	-	-	
LPES040	8.5	9.4	10.4	11.3	12.2	13.2	-	-	
L DEC450	0.103	0.115	0.128	0.14	0.153	0.165	-	-	
LPES150	8.6	9.5	10.5	11.4	12.3	13.3	-	-	
I DECOM	0.171	0.184	0.196	0.208	0.221	0.233	-	-	
LPES300	14.3	15.2	16.1	17.1	18	19	-	-	
L DEC 400	-	1.24	1.31	1.37	1.43	1.49	1.62	1.74	
LPES400	-	39	42	43.5	45.8	48	53	57	
1 DEC000	-	1.24	1.31	1.37	1.43	1.49	1.62	1.74	
LPES800	-	39	42	43.5	45.8	48	53	57	
L DEC4000	-	1.24	1.31	1.37	1.43	1.49	1.62	1.74	
LPES1200	-	39	42	43.5	45.8	48	53	57	
LDEC4500	-	1.24	1.31	1.37	1.43	1.49	1.62	1.74	
LPES1500	-	39	42	43.5	45.8	48	53	57	

Note 1) The moment of inertia does not include the moment of inertia of the servomotor

Note 2) The cylinder mass does not include the mass of the servomotor

Servomotor mounting procedures (when installed by customer)


- 1 Prepare a servomotor. (An output shaft with/without keyway can be used.)
- Set the servo motor with the coupling mounting hole of the motor flange facing upward.
- 3 Cleanly wipe away rust, dust, antirust oil, etc., of the motor shaft.
- 4 Loosen the clamp bolt of the coupling.
- 6 Remove the plug of the coupling case, turn the input shaft and set the clamp bolt head of the coupling to the position of the plug hole.
- 6 Smoothly insert the motor shaft to the coupling.
- Pay sufficient attention not to insert the motor shaft in a tilted manner.
- 8 After inserting the spigot facing part completely, attach it with the motor
- attaching bolt.

Using a torque wrench, tighten the clamp bolt of the coupling at the

n specified tightening torque.

Attach the removed plug to the coupling case.

* Refer to the instruction manual for details.

Model number	Coupling bolt size	Tightening torque N·m{ kgf·m }	Wrench length L mm	
LPES040			60	
LPES150	M4	3.8{ 0.39 }	60	
LPES300			70	
LPES400				
LPES800 LPES1200	M6	12{ 1.22 }	00	
	IVIO	12(1.22)	90	
LPES1500				

WARNING

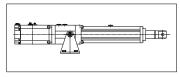
Cautions for selecting

Anti-rod rotation mechanism is not provided with this cylinder. Turning force is generated to the rod owing to the thrust, make sure to perform prevention of rotation on the equipment side.

The turning force placed on the rod at the time of the maximum thrust is as shown in the following table.

Model number	LPES040	LPES150	LPES300	LPES400	LPES800	LPES1200	LPES1500
Rod turning force N·m	0.43	1.60	3.19	7.08	14.2	21.3	26.6
{kgf•m}	{0.04}	{0.16}	{0.33}	{0.73}	{1.49}	{2.18}	{2.72}

Load holding mechanism is not provided with this cylinder in the cylinder main body. If a dangerous situation is anticipated during stoppage and when the product is broken, use a servomotor with a magnetic brake to hold the load, or provide a brake mechanism outside. It is same to use for elevating device or horizontal use and displacement is problem.


Cautions for installation

Use a trunnion mount or a flange mount (possible only for LPES150 or smaller) to install the main body. When used with oscillation, select an I-type or a U-type end fitting. If a lateral load is applied, provide a guide so as not to receive the direct lateral load or the bending moment.

When it is installed with a flange mount, install it in the vertical direction. (Refer to the figure at the right.)

* When considering use of a flange mount for a type of LPES300 or larger, please contact TEM beforehand.

When it is used horizontally for a long stroke, support the bottom part of the frame end as shown in the figure below. At this point, do not fix the frame and the supporting base.



Trunnion mount

Flange mount

Cautions for use

Overload protection mechanism is not provided with this cylinder in the cylinder main body, so provide protection against overvoltage, overcurrent, overload of the servo driver (servo amplifier). Additionally, manufacture the opposite side equipment of the power cylinder with a strength sufficient to withstand the maximum torque of the servomotor.

Manual operation shaft is not provided with this cylinder for a structural reason, so adjust the cylinder position

by operating the servo driver (servo amplifier) at very low speed.

Daphne Eponex SR No.2 is applied to the screw shaft of this cylinder at the time of shipment, however, periodic lubrication is required. Refer to the table at the right for the lubrication amount of grease and the lubrication cycle.

The application amount of the grease is 10 – 15g per stroke of 100mm.

And as grease for maintenance, JWGS100G is available (sold separately) from our company.

Frequency of operation	Lubrication cycle
500 100 reciprocations/day	Every 3 months 6 months
100 500 reciprocations/day	Every 6 months 1 year
10 100 reciprocations/day or less	Every 1 year 1.5 years

On the rod periphery, apply grease according to the lubrication cycle so that an oily film does not run out. Use the same grease as the one used for the screw.